
1 DANTHINE: PROTOCOL REPRESENTATION 643
,

[36] R. J. Sundstrom, “Formal definition of IBM’s system network archi- @$; Andre’ A. S. Danthine (M .) is a Professor at the
tecture,” in Proc. Nat. Telecomrnun. Conf. .. LQS Angeles, CA, k c . 3 University of Liege, Liege, , Agium. Since 1972 he
1977, p. 3A1. has been engaged in computer network research. His

[37] C. Sunshine, “Formal techniques for protocol specification and verifi- research group has done studies for the Belgian
cation,” IEEE Comput. Mag., 2 1 pp., Aug. 1979. Government and several private companies in

[38] C. A. Sunshine and Y. K. Dalal, “Connection management in transport Belgium and France. He is Editor of Computer
protocols,” Comput. Networks, vol. 2, pp.454-473, k c . 197%&; Networks.

[39] C. A. Sunshine, “Survey of protocol definition and verification tech- He is a member of the Association of Computing
niques,” in Proc. Cornput. Network Protocols Symp., Univ. of LiZge, Machinery. Since October 1979, he has been
Belgium, Feb. 1978, and Compur. Networks, vol. 2, pp. 346350, Oct. Chairman of the TC6 of the International Federation
1978. of Information Processing.

A General Transition Model for Protocols and
Communication Services

GREGOR V. BOCHMANN

(Invited Paper)

specification are distinguished: 1) the local properties which characterize state transition and programming language approaches to
the interface through which the service may be accessed, and 2) the global
properties which describe the “end-to-end” communication charac- verification. Knowledge of the indicated references may be
tefitia ofthe semi@. It is shown how the specification method is related to useful, but are not necessary for the Of these
the general transition model for protocol specification. Verification is
discussed briefly with emphasis on the use of invariant assertions in the
context of finite state as well as programming language protocol de-
scriptions.

The discussed topics are demonstrated with examples based on the
HDLC classes of procedures and the X.25 Virtual Circuit data transmission
service.

I. INTRODUCTION

D IFFERENT approaches have been used for the formal
specification and verification of communication protocols.

As explained in another paper of this collection, most of these
approaches use finite state transition diagrams or programs
written is some high-level programming language or both. The
purpose of this paper is threefold.

sections.
Second, we discuss these issues by considering, as an ex-

ample, the HDLC classes of procedures.
Third-and this is the main part of the paper in Section 111-

we describe a method for specifying the communication serv-
ice provided by a protocol. While certain aspects of this method
are related to our “unified” approach, we believe that most
elements of the method are of general validity and applicabi-
lity. In fact, the method is related to software engineering
methods [2] for specifying software modules. However, cer-
tain elements of our method are specific to protocols due to
their distributed nature.

11. A GENERAL TRANSITION MODEL
For a given communication layer of a distributed computer

system, we assume that the protocol is specified by separate
descriptions for both entities executing the protocol, as shown

Manuscript received May 18, 1979; revised December 18, 1979. in Fig. 1. We explain in this section the main features of a gen-
The author is with the Department d’Informatique et de Recherche eral transition model [I] is based on ~ ~ l l ~ ~ 7 ~ transition

Op&ationnelle, UniversitB de Montrhl, Montreal, P.Q., Canada, on
leave at the Computer Systems Laboratory, Stanford University, Stan- model [3] for pardel programs. We also discuss the relation
ford, CA 94305. of this model to other protocol description methods, and the

0090-6778/80/0400-0643$00.75 0 1980 IEEE

644 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

transmission medium
underlying I

Fig. 1. A protocol layer within a layered system architecture.

Q operational

Fig. 2. State transition diagrams for the primary link setup module
of an HDLC station. (a) Operational procedure which may be dis-
continued due to a failure. [The diagram is hierarchically depend-
ent on the operufionul state of diagram (b).] (b) Diagram showing
the possible failure and restart transitions.

importance of modularization which may lead to the sub-
division of a given communication layer into several sublayers
or protocol modules. Without giving the complete definitions
which may be found in the literature, these concepts are ex-
plained using the HDLC classes of procedures as an example.
The complete HDLC specifications, based on this method,
may be found in [4]. An experience of using these specifica-
tions for the implementation of X.25 link level procedures is
described in [S J .

A. The Description Method

In our general transition model, an entity is described by
the set of possible states in which it may be, and the possible
state transitions (which are assumed to exclude one another
in time). The possible states are generally described by two
components:

1) a finite state transition diagram, and
2) a set of program variables which each may assume cer-

The state of the entity is characterized by: 1) a token
which indicates the active place in the transition diagram, and
2) the values of the program variables. As an example, Fig. 2
shows the transition diagram of an HDLC module which oper-
ates the link setup and disconnection procedure. The state
space of a complete HDLC station is defined by this and simi-
lar diagrams (one for each of the modules shown in Fig. 5) and
the program variables shown in Fig. 3.

tain values.

received : frame-type;

s ta tus : status-type;
general

unack : sequence-count;

VS : sequence-count;

b u f f e r Source

data (VS:sequence-count):info-block

to-send (VS:sequence-count): boolean

VR:sequence-count; 1 Sink

PF-cont ro l .b i t : (0.. 1) ; 1 P r F ~ ~ n t r o l
Fig. 3. Program variables of HDLC station.

The operation of an entity is defined by the possible state
transitions. These transitions are indicated in the transition
diagram (see, for example, Fig. 2); however, additional in-
formation must be provided. For instance, each transition,
when executed, may change the values of the program varia-
bles and interact with the user entity through the upper layer
interface or with the underlying transmission medium through
the lower interface (see Fig. 1). A given transition may only be
executed when its enabling predicate, i.e., a Boolean expres-
sion depending on the program variables, is true. This addi-
tional information may be given in the form of a table, as
shown in Fig. 4. For example, the _I transition, which sends
an information (Z) frame to the peer entity, may only be ex-
ecuted when a data block is to be sent and not too many I
frames are unacknowledged. When executed, the action of
the transition sends an I frame and updates the value of the
send variable VS.

B. Relation to Other Description Methods

It has been pointed out [5] that most protocols contain
certain aspects that are naturally described by finite state
(FS) transition diagrams and other aspects that are better de-
scribed by program variables and executable statements writ-
ten in some programming language. The HDLC procedures
provide a typical example. The link setup and disconnection
procedure is described relatively completely by the FS transi-
tion diagram of Fig. 2, whereas the data transfer, exemplified
by the L and I= transitions given in Fig. 4, essentially involves
program variables and statements. Different approaches have
been taken to cope with this situation (see, for example, [6]) .

The approach of attempting to write complete descriptions
in the FS model is limited because most protocols are so com-
plex that the resulting FS descriptions becomes too large to be
useful. However, partial descriptions in the FS model may be
very useful. For example, the FS descriptions of X.21 and
X.25 are of this kind. We note that even a relatively complete
FS description and analysis [7] of the simple “alternating
bit” protocol ignores the contents of the exchanged user mes-
sages. The partial description approach corresponds to keeping
only the FS transition diagram of our general transition model
(in the case of the HDLC procedures, for example, keeping
Fig. 2 and ignoring Fig. 3 and 4). But it is clear that such a

BOCHMANN: PROTOCOLS AND COMMUNICATION SERVICES 645

T r a n s i t i o n

Pr imary s ta t ion:

- SXRM

UA

DISC

CMDR

ERROR

-

OTHER

- I

I=

Enabl ing predicate 1 Act ion

PF-cont ro l .b i t = 1

received.kind = UA

PF-cont ro l .b i t = 1

received. k ind = CMDR

S t a t u s i n
[i n v a l i d - c o n t r o l - f i e l d ,

i n v a l i d - i n f o ,
i n v a l i d - s i z e ,
inva l id -NR]

... I
buffer.to-send (VS)

and
VS # (unack + window)

mod modulus

received.kind = I
and

received.NS=VR

send-unnumbered (SXRM) ;.

i n i t (source) ;
i n i t (s i n k) ;
i n i t (t r a n s m i s s i o n) ;

send-unnumbered (DISC) ;

i n i t (transmi ss,ion) ;

i n i t (t ransmission) ;

&

i n i t (t ransmission) ;

send-info (VS,VR,buffer.data (VS));

VS := (VS+l) mod modulus ;

unack := recelved.NR;
VR := VR+l;
i n i t (t r a n s m i s s i o n)

Meaning

SXRM i s SNRM o r SARM depending
on the mode t o be s e t

components
i n i t i a l i z e t h e source and s i n k

frame received conta ined an er -
r o r t o be resolved by a h igher
leve l recovery procedure a t
Primary

i n c e r t a i n s t a t e s , t h e r e c e p -
t i o n o f c e r t a i n k i n d o f frames
i s s imply ignored (not shown i n
the t rans i t ion d iagrams

when t h e r e i s an I frame t o be

window, send i t
sen t , wh ich l i es w i th in t he send

i f I - f r a m e i s i n sequence,
pass de ta to user

Fig. 4. Definition of the transitions shown in Fig. 2(a) and of the I-
frame receivingl, and sendingL transitions.

description, and a protocol analysis based on it, must be com-
plemented with additional information.

On the other hand, the FS aspects may be eliminated from
the description of a protocol in the general transition model
by replacing each FS transition diagram, which contains one
token, by a variable which indicates the place of the token in
the diagram, together with appropriate enabling predicates
and update actions for the transitions. Such a transforma-
tion is straightforward, and is usually performed in order to
obtain an implementation of the protocol.

C. Modularization
Most protocols implemented in a given layer of a hierarchi-

cal system are so complex that a conceptual subdivision into
several sublayers or functions is very useful. In this case, each
sublayer or function corresponds to a module within each
entity executing the protocol. The different modules of an
entity are relatively independent of one another. In the ex-
amples which we have considered, i.e., the link level HDLC
procedures [4], the X.25 packet level procedures [8], and the
ML Protocol [9] providing transport and session layer func-
tions, the following concepts were sufficient to naturally de-
scribe the interactions between the modules within one entity,
and different entities through a layer interface. We note that
all, except the second concept, are also applicable to FSmodels.

Complete Independence: Each module is described by a
separate transition model.

Shared Variables: The modules are independent, except
that the transitions of one module may update the program
variables of the other module, thus influencing its behavior.
Fig. 5 shows a possible modular decomposition of an HDLC
primary station. In this example, a shared variable is used to
indicate a time-out condition to the P/F-bit control module,

. . I " I . * J
T

Source I

I Sink y

NOTATION:

+-+ d i r e c t c o u p l i n g . .+ h i e r a r c h i c a l dependence

- - +update o f shared var iable

Fig. 5. Modules of an HDLC primary station and their relation.

and the variable unack of the source module is accessed by the
sink module when a piggybacked acknowledgment arrives.

Hierarchical Dependence /4J : A module B is hierarchically
dependent on a module A if B enters its initial state when-
ever A enters a particular state, which we call the activating
state for B, and the transitions of B are only possible while A
remains in the activating state. In the example of Fig. 5, hier-
archical dependence is used to describe the fact that the data
transfer executed by the source and sink modules is only
active when the link setup module is in the connected state
(see Fig. 2).

Direct Coupling /4] , / 71 : This concept introduces a strong
synchronization between certain transitions of different mod-

646 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

ules. Two transitions of different modules are directly coupled
if they can only be executed jointly (only when both respec-
tive enabling predicates are true). This mechanism may be used
to describe the local interaction of an entity through the upper
layer interface with its user or through the lower interface
with the underlying transmission medium (see Section 111). In
a more general form, where a given transitipn is directly coupled
alternatively to several transitions of the other module, this
concept was also used for describing the interaction between
the PIF-bit control module and the other modules of an
HDLC station [4] , as indicated in Fig. 5. In fact, each sending
and receiving transition of the other modules must be coordi-
nated with a transition of the PIF-bit control module which
checks the validity of the P/F-bit sent or received.

111. SPECIFICATION OF COMMUNICATION SERVICE

The specification of the communication service provided by
a given protocol layer (see Fig. 1) defines what the user entities
have to know about the protocol layer they use, without being
concerned with the details of the protocol. We distinguish the
local and the global properties of a communication service.
The local properties of the service are those which characterize
the local interaction of one user entity with an entity provid-
ing the service, ignoring what happens at the other end of the
communication link. Given that we consider a communication
service, the local properties leave an important aspect unspeci-
fied, namely, the relation between what happens at the two
ends of the communication link. Since the global properties
specify this relation, they may be called the “end-toend”
properties of the communication service. We note that the dis-
tinction between local and global properties is not “exclusive”
since the specification of the global properties of a service usu-
ally implies (i.e., includes) its local properties. We include in
the following only some simple examples. A complete service
specification along the lines discussed here may be found in
~ 4 1 .

A. Local Properties

In this subsection, we concentrate on the local properties of
a communication service. These properties clearly determine
the local interface through which a user entity accesses the
service. The properties may be considered to be the abstract
specification for the local interface, which must be satisfied
in each local system. At the end of the section, we comment
on how this abstract interface may be refined in order to give
rise to a particular interface implementation.

I) A Directly Coupled Interface: We assume that both
entities that interact through the interface are described by a
general transition model, as explained in Section 11. We describe
the interaction between the two entities by direct coupling.
In particular, certain transitions of the service providing entity
are directly coupled with certain transitions of the user entity.
If we do not want to specify the operation of the user entity
(which is usually the case), we may simply give a list of infer-
face transitions which may be executed by the user entity sub-
ject to some (unspecified) enabling predicates, and which are
directly coupled with transitions of the service providing

interface transition
o f user entity

coupled transition I of HDLC station (see figures 2 and 4)

+‘penrequest

tOpenindlcation

“penmnfirmatlon
. .

+Closerequest

tC1oselndication

closeconfirmation

+D(data:info-block)

tD(d8ta:info-block)
. .

Fai 1

- SXRM starting in disconnected or
connected state

- SXRM starting in CMDR ezception state

UA starting i n Wait f o r sXRM ack state

DISC starting in connected state

DISC starting in CMDR escept ion state

UA starting i n Wait f o r DISC ack state

a transition appending the datu parameter

module
into the buffer variable of the source

I= where the data parameter i s equal
to received.data

failure

Fig. 6 . Interface transitions for the HDLC link layer service and their
coupling with the transitions of the service providing HDLC station.

entity. For example, for the entity using the HDLC link layer
service, we may define the interface transitions given in Fig. 6 .
We note that the flow control at the interface is automatically
present since a pair of directly coupled transitions may only be
executed when the corresponding enabling predicates in both
entities are true and no other transition is in progress. Para-
meterized transitions may be used for passing value parameters
between the two entities, such as the data parameter in the
case of the .1D and .TD transitions.

2) Abstraction: While the conceptual operation of the inter-
face may be described by directly coupled transitions, as ex-
plained above, we discuss in the following three further ab-
stractions which lead to simpler interface descriptions. The
first two abstractions are based on the fact that the user
entity does not need to (and should not) know the operation
of the protocol which provides the service. The same consid-
erations apply also in the general context of software engineer-
ing for the specification of the service provided by a software
module. The last abstraction is particular to the context of
communications.

Ignoring the Operation of the Protocol: The order in
which the interface transitions may be executed by the user
entity is clearly determined by the direct coupling and the
order in which the transitions of the service providing entity
may be executed. Let us consider the example of the layer
interface for the HDLC protocol. We may deduce from the
information in Figs. 6 and 2 that the interface transitions may
be executed in the order shown in Fig. 7. (This diagram is
obtained from the diagram of Fig. 2 by merging the Connected
and CMDR exception states, and replacing the transition labels
according to the table of Fig. 6 . We note that this derivation is
generally not so simple because the interaction between the
two protocol entities may limit the transition possibilities.)

Combining Interface Transitions into “Service Primi-
tives’’: Continuing with the example above, we see in Fig. 7
that certain interface transitions are always followed by the
same next transition. We may therefore combine these transi-
tions into a single one, thus simplifying the overall transition

BOCHMANN: PROTOCOLS AND COMMUNICATION SERVICES 647

connected connected

connected

t D LD
Fig. 8. Simplified local service interface transition diagram.

t D 40
(a)’

Fig. 7. Local service interface transition diagram based on Figs. 2(a)
and 6 .

diagram. Adopting the following combinations

tCloseindication Closeconfirmation E ?Close

leads to the interface transition diagram of Fig. 8. We call the
remaining (partially combined) interface transitions sewice
primitives.

I’oring the Source of Initiation: The symbols “t” and
“4” in the names of the service primitives have been intro-
duced to explicitiy, indicate whether the execution of the
primitive is initiated by the service providing entity (“?”) or
the user entity (“4”). In the case of the data transmission
primitives TD and $D, this distinction is clearly important. In
the case of the link setup or disconnection primitives, how-
ever, this distinction is not always important, in which case
one may make abstraction from it. In particular, the diagram
of Fig. 8 does not require this distinction; neither does the
specification of the global properties of the service discussed in
the next section. We therefore drop the symbol “?” or “4”
whenever this distinction is of no importance.

If we consider the exchange of parameter values between
the interacting entities during the execution of a seriice primi-
tive, the situation may become more complicated. In the case
of a primitive for establishing a virtual circuit through a packet-
switched data network, for example, a distant subscriber ad-
dress parameter value is provided by the initiating entity, while
a response parameter value is returned by the other entity. In-
dependently of which entity initiates the primitive, this fact
may be described by the following notation:

VC-htablishment (+x: distant subscriber address, c y :
response code).

3) Discontinuation of Sentice Primitives: As shown in Fig. 7
and 8, the concept of hierarchical dependence (see Section

KC) may be used to indicate that the normal link layer service
is only available as long as the physical circuit is operutibnd.
Since a Fail interface transition may occur any time in the
operational state, link establishment primitives, for example,
will be “interrupted” by a failure which occurs after an
Openreq transition and before the corresponding Openconf
transition (see Fig. 7). We say that the service primitive is
discontinued. In Fig. 8, this possibility is not shown ex-
plicitly, but it must be taken into account. We conclude. that
whenever the layer interface description involves some hierar-
chical dependence, the possibility of discontinuation for the
dependent service primitives must be considered.

Another example ,of discontinuation is given by the virtual
circuit data transmission service where, according to X.25, the
transfer of a complete user sequence (i.e., variable length data
block) between the DTE and the network may be Lcinterrupted)7
by a reset or circuit clear.

4) Interface Implementation: It is clear that many details
must be added to the abstract interface specification sukested
in this section in order to obtain an interface implementation.
However, these det’ils may be chosen differently for each
local implementation, whereas the abstract interface properties
discussed in this section must be valid for every actual inter-
face. In particular, the mechanisms for implementing flow con-
trol and the distinction between which entity initiates a serv-
ice primitive may be implemented in quite different ways. For
instance, the use of message queues between the sedce pro-
viding entity and its user would be a particular way of imple-
menting the interface.

B. Global Properties
An interface description, as discussed in Section 111-A, de-

fines the service primitives and the order in which these primi-
tives may be executed at a local interface between a user and a
service providing entity, Here we concentrate on the global
properties of a-communication service, which are those aspects
that make the service useful for communication. The local
service interface description for the HDLC protocol, for ex-
ample, states that sending and receiving of user data blocks is
possible in the connected state (see Fig. 8). Only the global
properties state that the first block received at one end is equal
to the block first sent at the other end.

The global properties of a communication service usually
have two aspects: 1) restrictions on the order in which the serv-
ice primitives at the two ends of the link may be executed, and

2) restrictions on the possible parameter values exchanged. An
example of the second aspect is given above; an example for
the first aspect is the fact that (usually) the number of possible
receive executions at one end is always smaller or equal to the
number of send executions performed at the other end.

Speaking about the execution order of service primitives
at different locations brings up the problem of how such an
order can actually be observed or enforced. We assume, for
the present purposes, that the execution order at different
locations can be determined by some hypothetical observer
or with sufficiently well synchronized real time clocks.

We use the following notation. Given two service primitives
A and B, “A * B” means that the beginning ofthe execution
of A is earlier (in real time) than the end of the execution o f B
(that is, there may be a causal influence of A on B). The
notation “A 0 B” means that A * B and A B holds (that is,
there is some instant (in real time) when both service primi-
tives are in progress). We say that A and B are simultaneous.

For many purposes, instead of considering the execution
order to be defined in respect to the real time, it may be ade-
quate to consider that the execution order defined by the
global properties of the sekice determine some partial order of
events which represents some “logical time” as discussed by
Lamport [101 .

A Possible Notation: A possible notation for specifying
the global properties of a communication service are produc-
tion rules of a particular form. We adopt the usual convention
of writing the nonterminal symbols in brackets (. ..), and
writing the possible productions after the symbol ‘“::=”.
Each production is defined in terms of (possibly other) non-
terminals and terminals which are written in the form {$}.
X and Y are sequences of service primitives which describe a
possible pair of corresponding execution sequences at the
respective ends of the communication link.

As an example, Fig. 9 contains a possible specification of
the global properties of an HDLC link layer service. Rule 2 , for
instance, states that an (Open Sequence) consists of Open
primitives executed simultaneously at both ends of the com-
munication link followed by a (Data Sequence) with possibly
further repetitions. The (Data sequences) are defined by rules
3 and 4, and rule 1 defines the possible global execution
sequences which consist of a repetition of an (Open Sequence)
followed by a pair of simultaneous Close primitives executed
at the two ends of the link. (We note that the rules of Fig. 9
imply the “local” transition rules given in Fig. 8 which apply
separately at each end of the communication link.)

Restrictions on the possible parameter values may be stated
for each of the production rules. In the case of Fig. 9, the only
parameters exchanged are the user data sent and received (see
rule 4 of Fig. 9). In the case of the establishment of a virtual
circuit, using the service primitive given in Section III-A2),
the following rule may apply:

VC-Establishment (x, y)

VC-Establishment (x’, y ‘) I (VC Open) :: =

where y = y ’ , x = subscriber address of the entity executing

(1) <L ink Seq> ::= empty

::=<Link Seq> <Open Seq>

(2) <Open Seq > ::= 1 :E:\ <Data Seq >

::=<Open Seq >

(3) <Data Seq> ::=<Fifo Seq 1 2 > I1 < F i f o Seq 21 > , i . e . a r b i t r a r y
i n t e r l e a v i n g o f d a t a t r a n s f e r i n b o t h d i r e c t i o n s

(4) <Fife Seq 1 2 > ::=
bD(x1) &D(xp) &D(xn)

ltC$xi) t d x i) ... tD(x$) t
where 0 c m < n and

x . = x; for i = 1 , 2 , ... m

< F i f o Seq 2 1 > ::= ... (s i m i l a r l y)

(5) Discont inuat ion due t o a f a i l u r e : The execution sequences defined

above for e n t i t y 1 and e n t i t y 2

may be “ interrupted“ by a l o c a l Fail t r a n s i t i o n , such t h a t

t h e l a s t p r i m i t i v e e x e c u t e d by an e n t i t y may be discontinued.

I f A * B holds between executions o f two s e r v i c e p r i m i t i v e s

t h e f o l l o w i n g i s t r u e : A i s completely suppressed due to the

f a i l u r e i m p l i e s t h a t B is d iscont inued or complete ly suppressed.

Fig. 9. Global properties of the link layer communication service.

the “lower” part, and x‘ = subscriber address of the entity
executing the “upper” part.

C Elements for a Communication Service Specification

We conclude from the foregoing discussion that the specifi-
cation of a communication service for a given protocol layer
should contain the following elements.

1) An informal explanation of the service provided and the
functions included in the layer: this part is given in natural
language. It should give an overall understanding of the pur-
pose and operation of the layer.

2) A list of service primitives available at the layer inter-
face: this parts describes precisely each of the service primi-
tives individually.

3) Local properties determining in which order the service
primitives may be executed at one end of the communication
link without regard to the other end.

4) Global properties relating the execution order and ex-
changed parameter values at both ends of the communication
link: this is the essential part of the service specification.

5 j Grade of service considerations: they specify quantita-
tive properties such as throughput, delay, etc., and also indi-
cate in which situations and with which probabilities certain
malfunctions, such as undetected errors and failures, may oc-
cur. (In contrast to this, points 2)-4) above concentrate on
qualitative properties of the service which are always satisfied.)

We believe that any communication service specification
that does not contain the equivalent of the elements 2)-5)
must be considered incomplete. Elements 2)-4) are discussed
in the foregoing sections. We believe that formal methods,

BOCHMANN: PROTOCOLS AND COMMUNICATION SERVICES 649

similar to those described here, may be useful for specifying
these elements in a more precise manner.

IV. PROTOCOL VERIFICATION ’ ’

Instead of giving a review of protocol verification (which
may be found elsewhere [6]) or describing any particular ap-
proach to verification, we give in the following some remarks
which show the relation of the previous sections with the
problems of protocol verification, and which show also, we
hope, that many approaches to verification are basically very
simple. 4 : *A$

A. What Should be Verified?

The term “p;otocol verification” usually means to ascertain
that the entities executing a given protocol together with the
underlying transmission medium (see Fig. 1) actually provide
the specified communication service to the user entities in the
layer above. It is therefore necessary to determine the service
actually provided (based on the specification of the underlying
transmission service and the definition of the communicating
entities) and compare it with the communication service speci-
fied. Let us assume that we want to verify that the service
actually provided is equal to the service specified. The proof
may be divided into two parts.

1) Partial correctness: to show that every execution se-
quence of service primitives (at both ends of the communica-
tion link, and including specific parameter values) that is actu-
ally possible satisfies the constraints imposed by the service
specification.

2) Effective progress: to show that every execution sequence
of service primitives that satisfies the service specifications is
actually possible, and that no situations of deadlock or starva-
tion or infinite loops without progress exist.

B. Various Kinds of Assertions

The use of “assertions” is a well-known technique for the
verification of sequential programs and has been extended for
use with parallel programs. Similar techniques also apply to
the verification of protocols. The basic idea consists of defin-
ing an invariant assertion, or briefly “invariant,”i.e., a Boolean
expression depending on the state of the system which is al-
ways true (i.e., as iong as no state transition is in progress).
Since this technique was developed for verifying programs, it
seems natural to use it for verifying protocols that are defined
in terms of program variables and executed statements. In this
case, the invariants typically involve the program variables of
both entities and the state of the underlying transmission
medium (i.e., the “messages” in transit) [5] , [l 11 .

It is interesting to note that certain approaches to the
verification of protocols based of FS description techniques
may be shown to be based on a particular form of invariant
assertions. For example, the equations given in [7] for the
“adjoint states’’ of a protocol are such that the following
assertions are always true when the underlying medium is
empty (i.e., no “message” in transit). If ai(i = 1 , 2, -, n) are
the possible states for entity 1 , and s1 and s2 are the actual

states of entity 1 and entity 2, respectively, then the assertion

s1 = ai implies s2 is an element of Adj (ai)

holds for every possible state ai. This is not surprising since the
defiriiti2.p of “adjoint state,” roughly speaking, is as follows.
The adpint states Ad&) of a given state ai are those states of
entity 2 in which entity 2 may possibly be when entity 1 is in
state ai.

Another example is the detection of incompleteness or
overspecifications as described by Zafiropulo et al. (see, for ex-
ample, [121). Their main idea is as follows. Given an FS proto-
col definition, an invariant assertion of the following form is
derived for each possible state ai(i = 1,2, -e, n) of entity 1 :

si = ai implies the messages . . . may now be received by

the entity 1, but no other messages.

Given such assertions, it is easy to check whether the defini-
tion of entity 1 includes all necessary receiving transitions and
no unnecessary ones. It is sufficient to verify, for any given
state ai, that the definition foresees the handling of exactly
those received messages which are mentioned in the corre-
sponding assertion.

In the case of a protocol definition in terms of the general
transition model described in Section I1 where the state of an
entity is defined by an FS transition diagram and certain pro-
gram variables, invariant assertions are in general of the fol-
lowing form:

s1 = ai and s2 = bi implies Assertionii

where ai and bi are possible states of the entities 1 and 2, re-
spectively, and Assertionij is a Boolean expression depending
on the program variables of both entities and possibly also on
the state of the underlying transmission medium [131 .

As an example, we give the following invariant assertion
which may be derived from the definitions of the HDLC pro-
cedures given in the Figs. 2-4 and the assumption that each
frame received without error notification is an exact copy of
a frame sent by the other entity.

s1 = connected and s2 = connected implies

entity2.received.kind = Z and

entity2.received.NS = entity2.VR

implies entity2.received.data =

entity1 .buffer.data (entity2.VR)

This assertion is important for the verification of correct data
transfer of the HDLC procedures. It specifies conditions under
which a data block received by entity 2 is equal to the corre-
sponding data block in the buffer of entity 1. Given the defini-
tions of the service primitives J.D and tD (see Fig..6) and the
transition I= (see Fig. 4), this invariant assures that the data

blocks received‘by the user from entity 2 are the same as those
submitted by the user to entity 1. This is what rule 4 of the
service specification in Fig. 9 postulates.

We conclude that the above invariant assertion proves the
partial correctness of the HDLC protocol, as far as rule 4 of
the service specification is concerned. However, it does not
imply effective progiess, which would mean that each data
block submitted to entity 1 wiil eventually be delivered to the
user by entity 2. For proving this, we must rely on the under-
lying transmission service’ not to in& “too many” transmis-
sion errors. A more detailed discussion of a simple protocol
verification example in the context of the general transition
model is given in [11 .

V. CONCLUSIONS

In the framework of distributed system architecture invol-
ving a hierarchy of different protocol layers, the clear delimi-
tation between the different layers becomes an important issue.
The delimitation between a given layer and its user is given by
the layer interface which is characterized by the communica-
tion service provided through that interface. For the descrip-
tion of the layered architecture of a distributed system, the
service specifications for the individual layers seem to be the
main tool. For instance, one objective for a layered system
architecture is the possibility to change the protocol adopted
in a given layer without affecting the other layers .of the sys-
tem. During such a change, the protocoi of that layer clearly
changes, while the service provided must remain unchanged.

Because. the communication service definitions play such an
important role in the design of distributed systems, great care
should be taken for their exact specification. This paper pre-
sents a possible formal approach to the specification of com-
munication services. While a finite state approach seems to be
useful for many aspects of communication protocol specifi-
cation and verification (although not all), we feel that, for the
specification of communication services, the finite state ap-
proach alone is insufficient. It seems that important service
characteristics are naturally described by constraints on param-
eter values which are exchanged over the interface during the
execution of the service primitives. The two aspects of “order
of execution” and “exchanged parameter values” seem to cor-
respond to the two aspects of our general transition model de-

scribed in Section 11, namely, “state transitions“ and “program
variables.”

-ACKNOWLEDGMENT

I would like to thank J. Gecsei for suggesting many im-
provements on the manuscript.

REFERENCES
G. V. Bochmann ind J. Gecsei, “A unified model for the specification
and veriticationofprotocols,” inProc. IFIPCongr. ,1977, pp. 229-234.
D. L. Pam&, “The,use of precise specifications in the development of
software,” inPrOc. IFIPCOngr. 1977, pp. 861467.. ,

R. M. .Keller, “Formal verification of parallel pr6giams,” Commun.

G . V . Bochmann ihd R. J . Chung, “ A formalized specification of HDLC
classes of procedures,” in Proc. Nut. Teiecomrnun: Conf.. Los Angeles,
CA, Dec. 1977, pp. 03A. .2- 1-2- I I i reprinted in Advances in Computer
Communications and Networking, W. W . Chu., Ed. D&dhm,.MA:
ArtechHouse, 1979.
N. V. Stenning. “A data transfer protocol,” Comprir. Network, vol. I ,
pp. 99-1 IO, Sept. 1976.
G. V. Bochrnann and C. Sunshine, “Formal methods in communication
protocol design;” this issue, pp. 624-631.
G. V: Bochmann, “Finite state description of co,mmunication pfo-
tocols,” in Proc. Comput. Network Prorocols Symp., Univ. Lilge,
Lisge, Belgium, Feb. ,1978, pp. F3-1-F3-I I ; and Compur. Networks.

G. V. Bochmann.and T. Joachim, “Development and structure of an
X.25 implementation,” IEEE Trans. Software Eng:, vol. SE-5, pp.
429-439, Sept. 1979.
G. V. Bochmann and F. H. Vogt, “Message link p&tocol-Functional
specifications,” ACM Comput. Commun. Rev., vol. 9, pp. 7-39, Apr.
1979.
L. Lamport, “Time, clocks and the ordering of events in.a distributd
system,” Commun. Ass. Comput. Mach., vol. 21, pp. 558-565, July
1978.
G . V. Bochmann, “Logical verification ahd i@plementation of proto-
cols,” in Proc. 4th Data Commun. Sympo.. ACM/IEEE, 1975, pp.

P. Zafmpulo et al., “Towards analyzing and synthesizing protocols,”
this issue, pp. 65 1 - 6 6 I .
G . V. Bochmann, “Combining assertions and stat is forthe validation of
p,rocess communication,” in Constructing Q u a l i t y Software, P. G .
Hibbardand S . A. Shumah, Ed. Amsterdam: North-Holland, 1978, pp.
229-232.

Montreal, Montreal, P.Q., Canada, Tech. Rep., 1979.

ASS. Comput. Mach.; VOI. 19, pp. 37-1-384, July 1976,

vdl. 2, pp. 36.1-372, Oct. 1978.

8- 15-8-20.

- , “Specification of the services provided by the MLP,” Univ.

Gregor V. B~chmann, for a photograph and biography, see this issue, p. 63 I .

