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specification  are  distinguished: 1) the local properties  which  characterize state  transition  and  programming language approaches to 
the  interface through  which the  service may be accessed, and 2) the  global 
properties which describe  the “end-to-end”  communication  charac- verification. Knowledge  of the  indicated references may  be 
tefitia  ofthe semi@. It is shown how the  specification  method is related  to useful, but are not  necessary for the Of these 
the  general transition  model for protocol specification.  Verification is 
discussed briefly  with emphasis on the use of invariant  assertions in the 
context  of  finite  state as well as programming  language  protocol de- 
scriptions. 

The  discussed  topics are demonstrated  with  examples  based on the 
HDLC  classes  of procedures  and the X.25 Virtual  Circuit  data  transmission 
service. 

I. INTRODUCTION 

D IFFERENT  approaches have been used for the  formal 
specification and verification of communication protocols. 

As explained in another  paper of this collection, most of these 
approaches use finite state transition diagrams or programs 
written is  some  high-level  programming  language  or both. The 
purpose of this paper  is threefold. 

sections. 
Second, we discuss these issues  by considering, as  an ex- 

ample,  the HDLC  classes  of procedures. 
Third-and this is the main part of the paper  in  Section 111- 

we describe a  method for specifying the communication serv- 
ice  provided  by a protocol. While certain aspects of this method 
are related to our  “unified”  approach, we believe that most 
elements of the  method are  of  general validity and applicabi- 
lity. In fact,  the  method is related to software engineering 
methods [ 2 ]  for specifying software  modules. However, cer- 
tain elements of our  method are  specific to protocols  due to 
their distributed nature. 

11. A GENERAL TRANSITION MODEL 
For  a given communication layer of a distributed computer 

system, we assume that the protocol is specified  by separate 
descriptions for both entities executing the protocol, as  shown 

Manuscript received May 18, 1979; revised December 18, 1979. in Fig. 1. We explain in this section the main features of a gen- 
The  author is with the  Department  d’Informatique  et  de Recherche eral transition model [ I ]  is based on ~ ~ l l ~ ~ 7 ~  transition 

Op&ationnelle, UniversitB de Montrhl, Montreal, P.Q., Canada, on 
leave at  the  Computer  Systems  Laboratory,  Stanford University, Stan- model [3] for  pardel programs. We also  discuss the relation 
ford, CA 94305. of this model to  other protocol description methods,  and the 

0090-6778/80/0400-0643$00.75 0 1980 IEEE 



644 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980 

transmission  medium 
underlying I 

Fig. 1. A protocol layer within a layered system architecture. 

Q operational 

Fig. 2. State transition diagrams for the primary  link setup module 
of an HDLC station. (a) Operational procedure which may be dis- 
continued due to a failure. [The diagram is hierarchically depend- 
ent on the operufionul state of diagram (b).] (b) Diagram showing 
the possible failure  and  restart transitions. 

importance of modularization which may lead to the sub- 
division of a given communication layer into several sublayers 
or  protocol modules. Without giving the complete definitions 
which may be found in the  literature, these concepts are ex- 
plained using the HDLC  classes  of procedures as  an example. 
The complete HDLC specifications, based on this method, 
may be found in [4]. An experience of  using these specifica- 
tions  for  the  implementation of X.25 link level procedures is 
described in [S J . 

A.  The Description Method 

In our general transition model, an entity is described by 
the set of possible states in which it may be, and the possible 
state transitions (which  are assumed to exclude one another 
in time). The possible states are  generally described by  two 
components: 

1) a  finite  state transition diagram, and 
2) a set of program variables which each may assume cer- 

The state  of  the  entity is characterized by: 1) a  token 
which indicates the active place in the transition diagram, and 
2) the values  of the program variables. As an example, Fig. 2 
shows the transition diagram of an HDLC module which oper- 
ates  the link setup  and disconnection procedure. The state 
space of a complete HDLC station is defined by this and simi- 
lar diagrams  (one for each of the modules shown in Fig. 5 )  and 
the program variables shown in Fig. 3. 

tain values. 

received : frame-type; 

s ta tus  : status-type; 
general 

unack : sequence-count; 

VS : sequence-count; 

b u f f e r  Source 

data (VS:sequence-count):info-block 

to-send  (VS:sequence-count):  boolean 

VR:sequence-count; 1 Sink 

PF-cont ro l .b i t  : (0.. 1) ;  1 P r F ~ ~ n t r o l  
Fig. 3. Program  variables of HDLC station. 

The operation of  an entity is defined by the possible state 
transitions. These transitions are indicated in the  transition 
diagram  (see, for example, Fig. 2); however, additional in- 
formation must be provided. For instance, each transition, 
when executed, may  change the values  of the program varia- 
bles and interact with the user entity  through  the upper layer 
interface or with  the underlying transmission medium through 
the lower interface (see Fig. 1). A given transition may only be 
executed when its enabling predicate, i.e., a Boolean expres- 
sion depending on  the program  variables,  is true. This addi- 
tional information may be given in the form of a  table, as 
shown in Fig. 4. For example, the _I transition, which sends 
an information (Z) frame to the peer entity, may only be ex- 
ecuted when a  data block is to be sent and not  too many I 
frames are unacknowledged. When executed,  the  action of 
the transition sends an I frame and  updates  the value of the 
send variable VS. 

B. Relation to Other Description Methods 

It has been pointed  out [5] that most protocols contain 
certain aspects that are naturally described by finite state 
(FS) transition diagrams and other aspects that are better de- 
scribed by program variables and executable statements writ- 
ten in some programming language.  The HDLC procedures 
provide a typical example. The link setup  and disconnection 
procedure is described relatively completely by  the FS transi- 
tion diagram of Fig. 2,  whereas the  data transfer, exemplified 
by the L and I= transitions given in Fig. 4, essentially involves 
program variables and statements. Different approaches have 
been taken to cope with this situation (see, for example, [ 6 ] ) .  

The approach of attempting to write complete descriptions 
in the  FS model is limited because most protocols are so com- 
plex that  the resulting FS descriptions becomes too large to be 
useful. However, partial descriptions in the  FS model may be 
very useful. For example, the FS descriptions of X.21 and 
X.25 are of this kind. We note  that even a relatively complete 
FS description and analysis [7] of the simple “alternating 
bit”  protocol ignores the  contents of the exchanged user  mes- 
sages.  The partial description approach corresponds to keeping 
only the FS transition diagram of our general transition model 
(in the case of the HDLC procedures, for example, keeping 
Fig. 2 and ignoring Fig. 3 and 4). But it is  clear that such a 
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T r a n s i t i o n  

Pr imary  s ta t ion:  

- SXRM 

UA 

DISC 

CMDR 

ERROR 

- 

OTHER 

- I 

I= 

Enabl ing  predicate 1 Act ion  

PF-cont ro l   .b i t  = 1 

received.kind = UA 

PF-cont ro l   .b i t  = 1 

received.   k ind = CMDR 

S t a t u s   i n  
[ i n v a l i d - c o n t r o l - f i e l d ,  

i n v a l i d - i n f o ,  
i n v a l i d - s i z e ,  
inva l id -NR]  

... I 
buffer.to-send  (VS) 

and 
VS # (unack + window) 

mod modulus 

received.kind = I 
and 

received.NS=VR 

send-unnumbered (SXRM) ;. 

i n i t  (source) ; 
i n i t   ( s i n k )  ; 
i n i t   ( t r a n s m i s s i o n )  ; 

send-unnumbered (DISC) ; 

i n i  t ( transmi  ss,ion) ; 

i n i t  ( t ransmission) ; 

& 

i n i t  ( t ransmission) ; 

send-info (VS,VR,buffer.data (VS));  

VS := (VS+l) mod modulus ; 

unack := recelved.NR; 
VR := VR+l; 
i n i t   ( t r a n s m i s s i o n )  

Meaning 

SXRM i s  SNRM o r  SARM depending 
on the  mode t o  be s e t  

components 
i n i t i a l i z e   t h e  source and s i n k  

frame received  conta ined an er -  
r o r   t o  be resolved  by a h igher  
leve l   recovery  procedure  a t  
Primary 

i n   c e r t a i n   s t a t e s ,   t h e   r e c e p -  
t i o n   o f   c e r t a i n   k i n d  o f  frames 
i s  s imply   ignored  (not  shown i n  
the   t rans i t ion   d iagrams 

when t h e r e   i s  an I frame t o  be 

window, send i t  
sen t ,   wh ich   l i es   w i th in   t he  send 

i f  I - f r a m e   i s   i n  sequence, 
pass de ta   to   user  

Fig. 4. Definition of the transitions shown in Fig. 2(a) and of the I- 
frame receivingl, and sendingL transitions. 

description, and  a  protocol analysis  based on it, must be com- 
plemented  with additional information. 

On the  other  hand,  the  FS aspects may be  eliminated  from 
the description of a  protocol in the general transition model 
by  replacing each FS transition diagram, which  contains one 
token,  by  a variable which indicates the place  of the token in 
the diagram, together  with  appropriate  enabling predicates 
and update actions for the transitions. Such  a  transforma- 
tion is straightforward, and is  usually performed in order to 
obtain an implementation of the protocol. 

C. Modularization 
Most protocols  implemented in a given layer of  a hierarchi- 

cal system are so complex that  a conceptual subdivision into 
several sublayers or functions is  very useful. In this case, each 
sublayer or function  corresponds to  a module  within  each 
entity  executing  the protocol. The different modules of  an 
entity are  relatively independent of one  another. In the ex- 
amples  which we  have considered, i.e., the link level HDLC 
procedures [4], the X.25 packet level procedures [8], and the 
ML Protocol [9] providing transport and session layer func- 
tions, the following concepts were sufficient to naturally de- 
scribe the interactions between  the  modules  within  one entity, 
and different entities through a layer interface. We note  that 
all, except  the second concept, are also applicable to FSmodels. 

Complete Independence: Each module is described  by a 
separate transition model. 

Shared Variables: The  modules are independent,  except 
that the transitions of one  module may update the program 
variables  of the  other  module,  thus  influencing  its behavior. 
Fig. 5 shows a possible modular  decomposition of  an HDLC 
primary station. In this example,  a  shared variable  is  used to 
indicate a  time-out  condition to the P/F-bit  control module, 

. . I " I . * J 
T 

Source I 

I Sink y 

NOTATION: 

+-+ d i r e c t   c o u p l i n g  . .+ h i e r a r c h i c a l  dependence 

- - +update o f  shared  var iable 

Fig. 5. Modules of an HDLC primary station and  their relation. 

and  the variable unack of the source module is accessed  by the 
sink module when a piggybacked acknowledgment arrives. 

Hierarchical Dependence /4J : A module B is hierarchically 
dependent on a  module A if B enters its initial state when- 
ever A enters a particular state, which we call the activating 
state for B,  and  the transitions of B are only  possible  while A 
remains in the activating state. In the example  of  Fig. 5, hier- 
archical dependence is  used to describe the fact that  the data 
transfer executed by the source and sink modules is only 
active  when the link setup module is  in the connected state 
(see  Fig. 2). 

Direct Coupling /4 ] ,  / 71 : This concept  introduces  a  strong 
synchronization  between certain transitions of different mod- 
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ules. Two transitions of different modules are directly coupled 
if they can only be executed jointly (only when both respec- 
tive enabling predicates are true). This mechanism may be  used 
to describe the local interaction of an entity through the upper 
layer interface with  its user  or through the lower interface 
with the underlying transmission medium (see Section 111). In 
a more general form, where a given transitipn is directly coupled 
alternatively to several transitions of the  other module, this 
concept was  also  used for describing the  interaction between 
the PIF-bit  control module and the  other modules of an 
HDLC station  [4] , as indicated in Fig. 5. In fact, each sending 
and receiving transition of the  other modules must be coordi- 
nated  with  a  transition of the PIF-bit control module which 
checks the validity of the  P/F-bit sent or received. 

111. SPECIFICATION OF COMMUNICATION SERVICE 

The specification of the communication service  provided by 
a given protocol layer (see Fig. 1) defines what the user entities 
have to know  about  the  protocol layer they use, without being 
concerned with  the details of the  protocol. We distinguish the 
local and the global properties of a communication service. 
The local properties of the service are those which characterize 
the local interaction of one user entity  with  an  entity provid- 
ing the service, ignoring what happens at the  other end of the 
communication link. Given that we consider a communication 
service, the local properties leave  an important aspect unspeci- 
fied, namely, the relation between what happens at  the  two 
ends of the communication link. Since the global properties 
specify this relation, they may be called the “end-toend” 
properties of the communication service. We note  that  the dis- 
tinction between local and global properties is not “exclusive” 
since the specification of the global properties of a service usu- 
ally implies (i.e., includes) its local properties. We include in 
the following only some simple examples. A complete service 
specification along the lines discussed here may be found in 
~ 4 1 .  

A. Local Properties 

In this subsection, we concentrate on the local properties of 
a communication service.  These properties clearly determine 
the local interface through which a user entity accesses the 
service.  The properties may be considered to  be the  abstract 
specification for  the local interface, which must be satisfied 
in each local system. At the end of the  section, we comment 
on how this abstract interface may be refined in order to give 
rise to a particular interface implementation. 

I )  A Directly Coupled  Interface: We assume that  both 
entities  that  interact  through  the interface are described by a 
general transition model, as explained in Section 11.  We describe 
the  interaction between the  two  entities by direct coupling. 
In particular, certain transitions of the service providing entity 
are directly coupled with certain transitions of the user entity. 
If we do not  want to specify the  operation of the user entity 
(which is usually the case), we may simply give a list of infer- 
face transitions which may be executed by  the user entity sub- 
ject to some (unspecified) enabling predicates, and which are 
directly coupled with transitions of the service providing 

interface  transition 
o f  user entity 

coupled transition I of HDLC station (see figures 2 and 4)  

+‘penrequest 

tOpenindlcation 

“penmnfirmatlon 
. .  

+Closerequest 

tC1oselndication 

closeconfirmation 

+D(data:info-block) 

tD(d8ta:info-block) 
. .  

Fai 1 

- SXRM starting  in disconnected or 
connected state  

- SXRM starting  in CMDR ezception state  

UA starting i n  Wait f o r  sXRM ack state  

DISC starting  in connected state  

DISC starting  in CMDR escept ion state  

UA starting i n  Wait f o r  DISC ack state  

a  transition appending the datu parameter 

module 
into the buffer  variable  of  the  source 

I= where the data parameter i s  equal 
to received.data 

failure 

Fig. 6 .  Interface transitions for the HDLC  link layer service and their 
coupling with the transitions of the service  providing  HDLC station. 

entity. For example, for the  entity using the HDLC link layer 
service, we may define the interface transitions given in Fig. 6 .  
We note  that  the flow control  at  the interface is automatically 
present since a pair of directly coupled transitions may only be 
executed when the corresponding enabling predicates in both 
entities are true  and no other  transition is in progress. Para- 
meterized transitions may be used for passing  value parameters 
between the  two  entities, such as the data parameter in the 
case  of the .1D and .TD transitions. 

2) Abstraction: While the  conceptual  operation of the  inter- 
face may be described by directly coupled transitions, as ex- 
plained above, we discuss in the following three  further  ab- 
stractions which lead to simpler interface descriptions. The 
first two abstractions are based on  the  fact that the user 
entity does not need to (and should not) know the  operation 
of the  protocol which provides the service. The same consid- 
erations apply also in the general context of software engineer- 
ing for  the specification of the service provided by  a software 
module. The last abstraction is particular to the  context of 
communications. 

Ignoring the Operation of the Protocol: The order in 
which the interface transitions may be executed  by  the user 
entity is clearly determined by the direct coupling and  the 
order in which the transitions of the service providing entity 
may be executed. Let us consider the example of the layer 
interface for  the HDLC protocol. We may deduce from the 
information in Figs. 6 and 2 that  the interface transitions may 
be executed in the order shown in Fig. 7. (This  diagram  is 
obtained from the diagram  of  Fig. 2 by merging the Connected 
and CMDR exception states, and replacing the transition labels 
according to the table of Fig. 6 .  We note  that this derivation is 
generally not so simple because the  interaction between the 
two  protocol  entities may limit the  transition possibilities.) 

Combining Interface Transitions into “Service Primi- 
tives’’: Continuing with  the example above, we  see  in  Fig. 7 
that certain interface transitions are  always followed by  the 
same next  transition. We may therefore combine these transi- 
tions into  a single one,  thus simplifying the overall transition 



BOCHMANN: PROTOCOLS AND COMMUNICATION SERVICES 647 

connected connected 

connected 

t D  LD 
Fig. 8. Simplified local service interface transition diagram. 

t D  40 
(a)’ 

Fig. 7. Local service interface transition diagram based on Figs. 2(a) 
and 6 .  

diagram.  Adopting the following combinations 

tCloseindication  Closeconfirmation E ?Close 

leads to the  interface  transition diagram  of Fig. 8. We call the 
remaining (partially combined) interface transitions sewice 
primitives. 

I’oring the Source of Initiation: The  symbols “t” and 
“4” in  the names of the service primitives have been  intro- 
duced to explicitiy, indicate  whether  the  execution of the 
primitive is initiated by the service  providing entity (“?”) or 
the user entity (“4”). In the case  of the  data transmission 
primitives TD and $D, this distinction is clearly important.  In 
the case  of the  link  setup  or disconnection primitives, how- 
ever, this distinction is not always important,  in which  case 
one may make abstraction  from it.  In particular,  the diagram 
of Fig. 8 does not require this  distinction;  neither does the 
specification of the global properties of the service  discussed in 
the  next  section. We therefore  drop  the symbol “?” or “4” 
whenever this distinction is  of no importance. 

If we consider the exchange  of parameter values  between 
the  interacting  entities during the execution of a  seriice primi- 
tive, the  situation may  become more  complicated. In the case 
of a primitive for establishing a virtual circuit  through  a  packet- 
switched data  network,  for example, a distant subscriber ad- 
dress parameter value  is  provided  by the  initiating entity, while 
a response parameter value  is returned by the  other  entity.  In- 
dependently of  which entity initiates  the primitive, this  fact 
may be described by  the following notation: 

VC-htablishment (+x: distant subscriber address, c y :  
response  code). 

3)  Discontinuation of Sentice Primitives: As shown in Fig. 7 
and 8, the  concept of hierarchical dependence (see Section 

KC) may  be used to indicate that  the normal  link layer service 
is only  available  as long as the physical circuit is operutibnd. 
Since a Fail interface transition  may occur  any  time in the 
operational state,  link establishment primitives, for example, 
will  be “interrupted” by a failure which  occurs after an 
Openreq transition  and  before  the corresponding Openconf 
transition (see  Fig. 7). We say that  the service primitive is 
discontinued. In  Fig. 8, this possibility is not shown ex- 
plicitly, but it must  be taken  into  account. We conclude. that 
whenever the layer interface description  involves  some hierar- 
chical dependence,  the possibility of discontinuation for the 
dependent service primitives must be  considered. 

Another example ,of discontinuation is  given  by the virtual 
circuit  data transmission  service where, according to X.25, the 
transfer of a complete  user  sequence  (i.e.,  variable length  data 
block) between  the DTE and the network may  be Lcinterrupted)7 
by  a reset or circuit clear. 

4 )  Interface Implementation: It is  clear that many details 
must  be  added to the  abstract  interface specification sukested 
in this section in  order to obtain an interface  implementation. 
However,  these det’ils may  be  chosen differently for each 
local implementation, whereas the abstract  interface  properties 
discussed in this section must be  valid for every actual  inter- 
face. In  particular,  the mechanisms for implementing  flow con- 
trol  and  the distinction between  which entity  initiates  a serv- 
ice  primitive  may  be implemented  in  quite  different ways. For 
instance, the use of message  queues  between the sedce  pro- 
viding entity  and  its user  would  be a particular way  of  imple- 
menting  the  interface. 

B. Global Properties 
An interface description, as  discussed in Section 111-A, de- 

fines the service primitives and  the  order  in which these primi- 
tives  may  be executed  at  a local interface between a user and  a 
service  providing entity, Here we concentrate on the global 
properties of a-communication service, which are those  aspects 
that make the service  useful for communication. The local 
service interface description for the HDLC protocol, for ex- 
ample,  states  that sending and receiving  of  user data blocks  is 
possible in  the connected state (see  Fig. 8). Only the global 
properties  state that the first block  received at one end is  equal 
to the block first sent at  the  other  end. 

The global properties of a  communication service  usually 
have two aspects: 1) restrictions on the  order in which the serv- 
ice primitives at the  two  ends  of  the  link may be executed,  and 



2 )  restrictions on the possible parameter values exchanged. An 
example of the second aspect is  given  above;  an  example for 
the first aspect is the fact that (usually) the number  of  possible 
receive executions at one  end is  always  smaller  or equal to the 
number of  send executions  performed at the other end. 

Speaking about the execution  order of  service  primitives 
at different locations brings up the problem  of how such an 
order can actually be observed  or enforced. We assume, for 
the present purposes, that  the execution  order at different 
locations can be  determined by  some hypothetical observer 
or  with sufficiently well synchronized real time clocks. 

We use the following  notation. Given two service  primitives 
A and B, “A * B” means that the beginning ofthe execution 
of A is earlier (in  real time)  than the end of the  execution o f B  
(that is, there may be  a causal influence of A on B).  The 
notation “A 0 B” means that A * B  and A B  holds  (that is, 
there is some instant (in  real time) when both service primi- 
tives  are  in  progress). We say that A and  B are simultaneous. 

For  many  purposes,  instead of  considering the execution 
order to be  defined in respect to the real time, it may be ade- 
quate to consider that the execution  order  defined by the 
global properties of the  sekice determine some partial order of 
events  which represents some  “logical time” as  discussed  by 
Lamport [ 101 . 

A Possible Notation: A possible notation for specifying 
the global properties of a  communication service  are produc- 
tion rules  of a particular form. We adopt  the usual convention 
of writing  the  nonterminal  symbols in brackets (. ..), and 
writing the possible productions after the  symbol ‘“::=”. 
Each production is defined in terms of  (possibly other)  non- 
terminals  and  terminals  which are written in the form {$}. 
X and Y are sequences of  service  primitives which describe a 
possible pair of corresponding  execution  sequences at  the 
respective ends of the  communication link. 

As an example, Fig. 9 contains  a possible specification of 
the global properties of an HDLC link layer service.  Rule 2 ,  for 
instance, states that an  (Open Sequence) consists  of Open 
primitives executed  simultaneously at  both ends of the com- 
munication link followed  by  a  (Data  Sequence)  with possibly 
further repetitions. The (Data  sequences) are defined  by rules 
3 and 4, and rule 1 defines the possible  global execution 
sequences  which consist of a repetition of  an  (Open Sequence) 
followed  by  a pair  of simultaneous Close primitives executed 
at  the  two  ends  of  the link. (We note  that  the rules  of  Fig. 9 
imply  the  “local” transition rules  given in Fig. 8 which  apply 
separately at each  end of the  communication link.) 

Restrictions on  the possible parameter values may  be  stated 
for  each of the  production rules.  In the case  of  Fig. 9, the only 
parameters  exchanged are the user data  sent  and received  (see 
rule 4 of Fig. 9). In the case  of the  establishment of a virtual 
circuit, using the service  primitive  given in Section III-A2), 
the  following rule  may apply: 

VC-Establishment (x, y )  

VC-Establishment (x’, y ‘ )  I (VC Open) :: = 

where y = y ’ ,  x = subscriber address of  the  entity  executing 

(1 )   <L ink  Seq> ::= empty 

::=<Link  Seq> <Open Seq> 

( 2 )  <Open Seq > ::= 1 :E:\ <Data Seq > 

::=<Open Seq > 

(3 )  <Data  Seq>  ::=<Fifo Seq 1 2 >  I1 < F i f o  Seq 21 > , i . e .   a r b i t r a r y  
i n t e r l e a v i n g   o f   d a t a   t r a n s f e r   i n   b o t h   d i r e c t i o n s  

( 4 )  <Fife Seq 1 2 >  ::= 
bD(x1)  &D(xp) ... ... &D(xn) 

ltC$xi) t d x i )  ... tD(x$) t 
where 0 c m < n and 

x .  = x; for i = 1 , 2 ,  ... m 

< F i f o  Seq 2 1 >  ::= ... ( s i m i l a r l y )  

( 5 )  Discont inuat ion  due t o  a f a i l u r e :  The  execution  sequences  defined 

above for e n t i t y  1 and e n t i t y  2 

may be  “ interrupted“  by  a l o c a l  Fail t r a n s i t i o n ,  such t h a t  

t h e   l a s t   p r i m i t i v e   e x e c u t e d  by  an e n t i t y  may be  discontinued. 

I f  A * B holds  between  executions o f  two s e r v i c e   p r i m i t i v e s  

t h e   f o l l o w i n g   i s   t r u e :  A i s  completely  suppressed  due  to  the 

f a i l u r e   i m p l i e s   t h a t  B is   d iscont inued  or   complete ly   suppressed.  

Fig. 9. Global properties of the link  layer communication service. 

the  “lower” part, and x‘ = subscriber address of the  entity 
executing the  “upper”  part. 

C Elements for a  Communication Service Specification 

We conclude  from the foregoing  discussion that  the specifi- 
cation of a  communication service for a given protocol layer 
should  contain  the following elements. 

1) An informal  explanation of the service provided  and  the 
functions  included in the layer: this part is  given in natural 
language. It should give an  overall understanding of the pur- 
pose and  operation of the layer. 

2 )  A list of  service  primitives  available at  the layer inter- 
face: this parts describes  precisely  each  of the service primi- 
tives individually. 

3) Local properties determining in which  order  the service 
primitives may be  executed at one  end of the  communication 
link without regard to the  other  end. 

4) Global properties relating the  execution  order  and ex- 
changed parameter values at  both ends  of  the  communication 
link: this is the essential part of the service specification. 

5 j Grade of service considerations: they specify quantita- 
tive properties such as throughput, delay, etc., and  also indi- 
cate in which situations and with  which probabilities certain 
malfunctions,  such as undetected errors and failures, may oc- 
cur. (In contrast to this, points 2)-4) above concentrate  on 
qualitative properties of the service which are always  satisfied.) 

We believe that any  communication service specification 
that does  not  contain  the  equivalent  of  the  elements 2)-5) 
must  be  considered  incomplete.  Elements  2)-4) are  discussed 
in the foregoing sections. We believe that formal  methods, 
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similar to  those  described here,  may be  useful for specifying 
these elements in a  more precise manner. 

IV. PROTOCOL VERIFICATION ’ ’ 

Instead of  giving a review  of protocol verification  (which 
may be  found elsewhere [6]) or describing any particular ap- 
proach to verification, we  give in the following some remarks 
which  show the relation of the previous sections with the 
problems  of  protocol verification, and  which show  also, we 
hope,  that many approaches to verification are  basically  very 
simple. 4 : *A$ 

A.  What Should be Verified? 

The  term “p;otocol verification” usually  means to ascertain 
that  the entities executing  a given protocol  together  with the 
underlying transmission  medium  (see  Fig. 1) actually provide 
the specified communication service to  the user entities in the 
layer above. It is therefore necessary to determine  the service 
actually provided  (based on  the specification of the underlying 
transmission  service and  the definition of  the  communicating 
entities) and  compare it with the communication service speci- 
fied. Let us  assume that we want to  verify that the service 
actually provided  is equal to  the service specified. The  proof 
may  be divided into  two parts. 

1) Partial correctness: to show that every execution se- 
quence  of service  primitives (at both ends  of  the  communica- 
tion link, and  including specific parameter values) that is actu- 
ally  possible  satisfies the constraints imposed by the service 
specification. 

2) Effective progress: to show that every execution  sequence 
of service  primitives that satisfies the service specifications is 
actually possible, and that no situations of deadlock or starva- 
tion  or infinite loops  without progress exist. 

B. Various Kinds of Assertions 

The use  of “assertions” is a well-known technique for the 
verification  of sequential programs  and  has been  extended for 
use with parallel  programs.  Similar techniques also apply to 
the verification of protocols. The basic  idea  consists  of defin- 
ing  an invariant assertion, or briefly “invariant,”i.e., a Boolean 
expression  depending on the  state of the system  which is  al- 
ways true (i.e.,  as iong as no state transition is in progress). 
Since this technique was  developed for verifying  programs, it 
seems natural to use it for verifying protocols that are defined 
in terms of  program  variables  and executed  statements. In this 
case, the invariants typically involve the program  variables  of 
both entities and the  state of the  underlying transmission 
medium (i.e., the “messages” in transit) [ 5 ] ,  [l 11 . 

It is interesting to  note  that certain approaches to  the 
verification of protocols based  of  FS description techniques 
may be  shown to be based on  a particular form of invariant 
assertions. For  example, the equations given in [7] for the 
“adjoint states’’  of a  protocol are such that  the following 
assertions are  always true when the underlying medium  is 
empty (i.e., no “message” in transit). If ai(i = 1 ,  2, -, n)  are 
the possible states for entity 1 ,  and s1 and s2 are the actual 

states of entity 1 and  entity 2,  respectively, then  the assertion 

s1 = ai implies s2 is an element of  Adj (ai) 

holds for every  possible state ai. This  is not surprising since the 
defiriiti2.p of  “adjoint state,” roughly  speaking, is  as follows. 
The adpint states Ad&)  of a given state ai are those states of 
entity 2 in which entity  2 may  possibly be when entity 1 is in 
state ai. 

Another example is the  detection of incompleteness  or 
overspecifications  as  described  by Zafiropulo et al. (see, for ex- 
ample, [ 121 ). Their  main idea is  as follows.  Given  an FS  proto- 
col definition, an invariant assertion of the following  form  is 
derived for each possible state ai(i = 1,2,  -e, n)  of  entity 1 : 

si = ai implies the messages . . . may  now  be  received  by 

the  entity 1, but  no  other messages. 

Given  such assertions, it is  easy to check  whether  the defini- 
tion of entity 1 includes all  necessary  receiving transitions and 
no unnecessary ones. It is sufficient to verify, for any given 
state ai, that  the definition foresees the handling of exactly 
those received  messages which are mentioned in the corre- 
sponding assertion. 

In the case  of a  protocol definition in terms of the general 
transition model described in Section I1 where the  state  of  an 
entity is defined  by an FS transition diagram  and certain pro- 
gram  variables, invariant assertions are in general  of the  fol- 
lowing form: 

s1 = ai and s2 = bi implies  Assertionii 

where ai and bi are possible states of the entities 1 and 2, re- 
spectively, and Assertionij is a Boolean expression  depending 
on the program  variables of both entities and possibly  also on 
the  state of the  underlying transmission medium [ 131 . 

As an example, we  give the following invariant assertion 
which  may be  derived from the definitions of the HDLC pro- 
cedures given in the Figs.  2-4  and the assumption that each 
frame received without error notification is an exact  copy  of 
a  frame sent by the  other  entity. 

s1 = connected  and s2 = connected  implies 

entity2.received.kind = Z and 

entity2.received.NS = entity2.VR 

implies entity2.received.data = 

entity1 .buffer.data (entity2.VR) 

This assertion is important for the verification of correct data 
transfer of  the HDLC procedures. It specifies conditions  under 
which a data  block received  by entity 2 is equal to  the corre- 
sponding  data block  in the  buffer  of entity 1. Given the defini- 
tions of  the service  primitives J.D and tD (see Fig..6) and the 
transition I= (see  Fig.  4), this invariant assures that  the  data 



blocks  received‘by the user from  entity 2 are the same  as those 
submitted by the user to  entity 1. This is what rule 4 of the 
service specification in Fig. 9 postulates. 

We conclude that  the above invariant assertion proves the 
partial correctness of the HDLC protocol, as  far  as  rule 4 of 
the service specification is concerned. However, it does not 
imply effective progiess, which  would  mean that each  data 
block  submitted to entity 1 wiil eventually  be delivered to  the 
user by  entity 2.  For proving this, we must rely on the  under- 
lying transmission service’ not  to in& “too many” transmis- 
sion errors. A  more detailed discussion  of a simple protocol 
verification example in the context of the general transition 
model is  given in [ 11 . 

V. CONCLUSIONS 

In the framework of distributed system architecture invol- 
ving a  hierarchy  of different protocol layers, the clear  delimi- 
tation between the different layers becomes  an  important issue. 
The  delimitation  between  a given layer and  its user  is  given by 
the layer interface which is characterized by  the communica- 
tion service  provided through that interface. For  the descrip- 
tion of the layered architecture of  a distributed system, the 
service specifications for the individual layers seem to be  the 
main tool.  For instance, one objective for a layered  system 
architecture is the possibility to  change the  protocol  adopted 
in a given layer without affecting the other layers .of the sys- 
tem. During such  a  change, the  protocoi of that layer clearly 
changes, while the service  provided must remain unchanged. 

Because. the  communication service definitions play such an 
important role in  the design of distributed systems, great care 
should be taken for their exact specification. This  paper pre- 
sents a possible formal  approach to the specification of  com- 
munication services.  While a finite state  approach seems to be 
useful for many aspects of communication  protocol specifi- 
cation  and verification (although not all),  we  feel that,  for  the 
specification of  communication services, the finite state ap- 
proach alone is insufficient. It seems that  important service 
characteristics are naturally described  by constraints on param- 
eter values which are exchanged over the interface during  the 
execution of the service primitives. The  two aspects of “order 
of execution”  and  “exchanged  parameter values”  seem to cor- 
respond to  the  two aspects of  our general transition model de- 

scribed in Section 11, namely, “state transitions“ and  “program 
variables.” 
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